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Using the approximate hydrodynamic equations from [1-3] we
calculate the nonisothermic flow of a real gas in a wbe with account
for radiative energy transfer for the case of a strong frequency depen-
dence of the absorption coefficient. For a fuller clarification of the
of reabsorbed emission we consider a flow of hydrogen at a pressure of
100 atm. We show that radiation makes an appreciable contribution
to the heat flux on the wall at temperatures up to 9000 K for a tube
of radius 0.3 cm and up to 6500° K for a tube of radius 3 cm. Simi-
larity of the temperature profiles in different variants is observed when
the temperature on the axis is below 5000° K,

Heat transfer in a laminar flow of high-temperature gas is effected
by conduction and radiation. If the considered volume of gas is trans-
parent 1o radiation, the consideration of the latter is relatively simple.
in dense gases, however, the radiation may be reabsorbed and in this
case the calculation of transfer of radiative energy in a real spectrum
with a strong frequency dependence of the absorption coefficient en-
counters considerable difficulties. A method of calculating radiative
energy transfer with allowance for reabsorption was presented in [4-7],
and we used this method in this work.

If there are high temperature gradients in the gas flows it is neces-
sary to consider the mutual effects of the velocity and temperature
distributions. The solution of the complete system of Navier-Stokes
equations, however, is fairly difficult even for an incompressible fluid.
In [1-3] the problem of a nonisothermic flow of gas in a tube (without
radiation) was solved with the aid of approximate hydrodynamic equa-
tions which are valid for high Reynolds numbers and large distances
from the entrance.

NOTATION
x,r = physical coordinates
Iy = tube radius
n — logarithmic radial coordinate
A = constant of logarithmic dilatation
U,V - longitudinal and transverse velocity components
p — pressure
p — density
T = temperature
I = viscosity coefficient
"

— thermal conductivity

= specific heat at constant pressure

mass flow rate

— integral divergence of radiative energy flux density over
spectrum

uapy = integral radiative energy density over frequency interval

AV

uAUP — integral equilibrium radiative energy density

c — velocity of light

<k> = absorption coefficient averaged over given frequency in-
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terval
qq  — radiative heat flux density on walt
q;  ~— conductive heat flux density on wall
H = enthalpy
HY = mean-mass enthalpy
R = Reynolds number

p =~ Prandtl number
M = Mach number

Subscripts: 0 denotes values in: initial section; s, values in ini-
tial section with r = 0; i, number of frequency interval; w, values on
wall.
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1. We consider the heat transfer in a laminar gas flow in a tube
(M «1). At high R =p,U,1e/i, in the region x = 0 at a great distance
from the entrance to the tube, where the parameter 6 = V /U, is small
(V,= max V) and é ~ 1/R by analogy with boundary-layer theory, the

complete Navier-Stokes equations can be replaced with accuracy to
quantities of the order of & by the approximate equations
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The derivatives dp/0r = 0 and 9p/ox ~ 6szp*/rg and, hence, the
density, specific heat, viscosity coefficient, and thermal conductivity
can be regarded as functions of the temperature alone. Henceforth,
instead of Op/x we will write the ordinary derivative. For the system
of equations (1.1) in the region Q(x = 0, 0 =r =ry) we write the
boundary and initial conditions

8T /or=10,0U/0r=0, V=0 for r=0,
T=Ty U=0, V=20 for r=r,,
T=T°),U=UHp=p for 2=0.  (L2)

These conditions are sufficient to find the values of V(0,r) and
[dp/dxly= in the initial section, and the derivatives with respectto
x of the longitudinal velocity component and the temperature, which
enables us to make a step along the axis. For this we have to eliminate

0U/0x and 0T/0x from the first equation of (1.1) by using the second
and fourth, in which T°(r) and U°(r) are substituted. Then, for V(0,r)
we obtain an ordinary differential equation of the first order with pa-
rameter [dp/dx]y=,. The two boundary conditions on V enable us to
determine both the function itself and the parameter.

Formulation of problem (1.1), (1.2), however, is complicated by
the fact that the initial velocity and temperature profiles can be as-
signed arbitrarily only at the tube entrance, and Egs. (1.1) are valid
only at a large distance from the entrance. In view of this the results
of this work must be regarded only as approximate engineering calcu-
lations. Since simultaneous consideration of the powerful reabsorbed
radiation and the exact hydrodynamic picture is very difficult, such
calculations will be of interest.

In the proposed work the initial profiles T°(r) and U(r) are taken
from calculations of a steady electric arc. In this case the complete
Navier-Stokes equations are valid up to a certain distance from the
section x = 0 and after this Eqs. (1.1) become valid. We assume that
Egs. (1.1)atsmall & describe approximately the whole region x > 0,
and at x < 0 the same equations are valid, but with the energy release
term in the energy equation. Then, when x = 0 we will have a discon-
tinuity surface of the parameters, on which the conservation conditions
derived from Eqs. (1.1) written in divergent form will be satisfied.
These conditions will be as follows:

lpUl=0, [p+ pU% =0, [pUH] = 0.

Hence, on passage across the surface x = 0 the values of U, T,
and p are conserved, and only the transverse velocity component V
has a discontinuity. This is a rather rough approach, but a solution of
the complete Navier-Stokes equations would considerably complicate
the problem. Thus, the solution of problem (1.1), (1.2)is very approxi-
mate up to a certain distance from x = 0.



The divergence of the radiative energy flux density ¢ was calcu~
lated from the known temperature profile on the assumption of local
thermal equilibrium. The whole spectrum is divided into a series of
frequency intervals, for each of which the absorption coefficient is
averaged over the frequency [4=7]. For each interval the radiative
transfer equation was solved in the diffusion approximation [4-8]
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with boundary conditions
duAvi/dr=0 for r=0,

duy, /dr 42 <k>iuAV{=0 for r=ro .
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We then determined
9 =1cY) <k (ugvi —¥au).

Here <¢k>; and u A’,';i are known temperature functions [7].

Equation (1.4) is based on the assumption that radiative energy
transfer along the channel axis has little effect on the divergence of
the radiative energy flux. Estimates applicable to the conditions of this
work showed that such an assumption gives an error of less than 10%.

In the solution of the problem we used the condition of constancy
of the mass flow rate

To
21 KpUrdr =0 (1.5)
¢

instead of the condition that V equal zero. This relationship is obtained
by term-by-term integration of the first equation in (1.1) over the
radius.

The system of equations (1.1), (1.5) and the boundary conditions
(1.2) allows the dilation

y=ax,n=r, U0 =al, V=1V,
Ty=T, (dp/ dz), = aldp/ dz), O, = aQ.

Hence, by the following selection of dimensionless parameters
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we can eliminate the absolute velocity from the equations. This means
that the obtained solution can be converted to a flow with a similar
velocity profile by a simple dilatation,

2. For convenience of calculation we replace the coordinate r* in
the equation by the coordinate n =1n(l + A —r'). This makes it
possible, by assigning various A, to dilate the wall region, where the
radial gradients of the unknown functions are high.

The problem was solved by the method of finite differences using
iteration. The system of equations in dimensionless form was obtained

by a two-layer implicit difference scheme. The second derivatives in
divergent form were represented according to Marchuk's scheme [87;
the first derivatives with respect to i were represented by asymmetric
differences, which ensures the validity of the pivot method [9] in the
solution of difference equations. The integral in (1.5) is replaced by
a trapezoidal sum.

The procedure in solving the difference equations at each step
along the axis was as follows. From the known values of the parameters
on the preceding step the temperature profile was determined from
the difference equation obtained from the fourth equation of (1.1) by
the pivot method. Then, from the simultaneous solution of the dif~
ference equations, corresponding to the second equation in (1.1) and
(1.5), (dp/dx)* and the profile of the longitudinal velocity component
were obtained. Finally, from the difference analog cf the first equa-
ton of (1.1) the profile of the transverse velocity component was found.
This process was repeated several times, as long as the difference iv
the parameters in two successive iterations exceeded a prescribed value.
The coefficients in the equations were determined from the parameters
obtained in the preceding iteration. The equation of radiative transfer
(1.4) was solved in each frequency interval by means of the tempera-
ture profile from the preceding iteration. We then determined the
value of ¢. As a zero approximation we took the parameters from the
previous step along x.

The calculations were performed on a computer. The real proper=
ties of hydrogen at a pressure of 100 atm, calculated in [7], were
tabulated. The values <k>; and up,. were taken from {7], were
they were calculated for eight frequency intervals. The wall tempera-
ture was taken as 300° K.

Besides the profile of T, ¢, U, and V, in the cioss sections of
the tube we calculated the integral radiative-energy flux density qq
over the spectrum on the wall, the conductive energy flux density q,,

and the mean-mass enthalpy H(1),

T
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These quantities are connected by the energy balance equation,
which is obtained by term-by-term integration of the fourth equation
of system (1.1) over the radius and over the axis,

x
oW O —HY @1 =27 (@ + ) da .
[ (2.1)

Relationship (2.1) was used to check the accuracy of the calcula=-
tion.

3. We illustrate several calculations of a hydrogen flow, the ini-
tial data of which are presented in Table 1 (here v = max [U°(r)/U.]).

In variants 1-3, 7 the initial temperature profiles were taken from
calculations for stabilized arcs of the same radius [7], and the initial
velocity profiles were calculated. In variant 8 the initial profiles of
variant 3 were extended along the radius. The two initial temperature
profiles (stabilized arc and parabola) and the two velocity profiles
(stabilized arc and jet along wall) were taken in various combinations
in variants 3-6.

Figures 13 shows the profiles of the temperature, divergence of
radiative energy flux density, and velocities for different cross sections
of variant 1. In all the figures the Arabic figure denotes the number

Table 1
BapuanT R, cat Q (2/cex) T., °K ) To(r)

1 0.3 1 14,700 1 R=0.3cu I =500 a
2 0.3 1 13.600 1 R=0.3cu I=100a
3 0.3 1 12,750 1 R=03cu I=30a
4 0.3 1.31 12.750 2 R=03cm I=30a
5 0.3 0.87 12,750 1 IapaGona

6 0.3 1.27 12.750 2 MapaGona

7 3 10 8.850 1 R=3cm I=300a
8 3 100 12,750 1 R=03emI=30a

585



x/d=1000
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Fig. 1

of the variant according to Table 1. For the first ten calibers there is
intense cooling of the gas close to the axis, mainly by radiation, which
causes transverse flows towards the axis, When radiation ceases to play
the main role the temperature falls over the whole radius and the trans-
verse flows become insignificant. The profile of the longitudinal velo-
city component is close to a parabola in all cross sections, although the
temperature varies a factor of tens. This occurred in all variants in
which the profiles of stabilized arcs were taken as the initial profiles.

A similar result was obtained in [10] for the region of stabilized heat
transfer.

Figure 4 shows the temperature profiles for variant 3. The initial
profile has a different shape, but the cooling process is similar to
variant 1—the temperature at first falls only in a narrow region close
to the axis. A similar situation is observed in Fig. 5 in a flow in a
tube of radius 3 cm (variant 7).

The heat flux densities on the wall due to ordinary thermal con=
ductivity and the total densities in relation to the distance along the
axis are shown in Fig. 6. The circles here correspond to variant 1,
the crosses to variant 2, and the triangles to variant 3. In all three
cases the radiant heat flux exceeds the conductive flux. The radiation
then decreases rapidly and the heat flux density due to radiation is
less than 10% of the total flux for three calibers in variant 3, five
calibers in variant 2, and fifteen calibers in variant 1. This instant
corresponds approximately to a temperature of 9000° K on the tube
axis, as is shown in Fig. 7, where the axial temperatures are plotted
in relation to x/d. In addition to the symbols used in Fig. 6 thesquares
here correspond to variant 7. This figure shows that the axial tempera-
ture in all four variants decreases almost exponentially.

Figure 8 shows plots of the mean-mass enthalpy against the axial
temperature for the same variants as in Fig. 7. The temperature pro~
files are not similar in the initial regions of the flow. Radiation ceases
to play a role in heat transfer at about 9000° K, but the temperature
profiles do not become similar until 5000° K.

Variants 3 and 8 differ only in the tube radius and, hence, com-
parison of them indicates the role of radiation in relation to the radius.
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T able 2

x/d T°K ¢ 10-10 g, 10— T°K qu10-1° q; 10—
Variant 3 Variant 4
0 12 750 1.49 0.89 12750 1.49 0.89
1 10 250 0.80 0.84 9100 0.06 0.97
3 8750 0.03 0.83 7500 — 0.91
5 7950 — 0.82 6 900 — 0.85
10 7000 — 0.81 6 200 — 0.77
Variant 5 Variant 6
0 12750 6,99 0,16 12750 6.99 0.16
1 10700 1.77 0.24 9750 0.90 0.26
3 9 600 0.44 0.35 8750 0.15 0.32
5 9050 0.17 0.49 8200 0.04 0.37
10 8150 0.02 0.71 7 200 — 0.48
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Figure 9 shows the heat flux densities on the wall due to ordinary heat
conduction and the total densities for variants 3, 7, and 8. The con= Fig. 11

tinuous lines represent variant 3, and the dashed line variant 8. In the
case of a flow in a tube of radius 3 cm the density of the convective
heat flux is an order less than in a tube of radius 0.3 cm, and radia-

tion plays a greater role up to hundred calibers. Here the dot-dash line

is the curve of the total heat flux density on the wall for variant 7.
The heat flux density due to ordinary heat conduction merges on the
graph with the corresponding curve for variant 8. Radiation plays a
role up to ten calibers, which corresponds to an axial temperature of

about 6500° K (Fig. 7).

In variants 3-8 the initial temperature on the axis and the initial
enthalpy flow rate were made the same. This was achieved by a suit-
able choice of the mass flow rate. The temperature and velocity
profiles obtained in variant 4 are shown in Figs. 10 and 11. A com-~
parison of the temperature profiles in corresponding cross sections in
Figs. 4 and 10 indicates that they do not differ greatly, although the
corresponding velocity profiles in variants 3 and 4 differ considerably.
Table 2 gives the values of the axial temperatures and the heat flux
densities on the wall due to radiation and ordinary heat conduction for
all four variants. The table shows that radiation disappears more rap-
idly in the case of a jet velocity profile and the same temperature
profile. In the last two variants the temperature at the wall increases
and, hence, the heat flux density due to ordinary heat conduction

increases. The temperature on the axis is highest on ten calibers in
variant 5. An analysis of these four variants shows that a change in the
initial velocity profile from the arc type to the jet type gives a dif-
ference of not more than 15% in the axial value of the temperature
on ten calibers.

The given results can, via dilation,be converted to other values
of mass flow rate with the same initial temperature profile and di-
mensionless velocity profile,

The authors thank A, T. Onufriev for interest and assistance in
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