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Using the approx imate  hydrodynamic  equations from [ 1 - 3 ]  we 

c a l c u l a t e  the nonisothermie  flow of a real  gas in a tube with account  

for rad ia t ive  energy transfer for the case of a strong frequency depen-  

dence  of the absorption coef f i c ien t .  For a fuller c l a r i f i ca t ion  of the 

of reabsorbed emission we consider a flow of hydrogen at  a pressure of 

100 a t m .  We show that  radia t ion  makes  an apprec iab le  contr ibut ion 

to the heat  flux on the wall  at  tempera tures  up to 9000 ~ K for a tube 

of radius 0.3 c m  and up to 6500* K for a tube of radius 3 c m .  S imi -  

lar i ty  of the tempera ture  profiles in different  variants  is observed when 

the t empera ture  on the axis is below 5000 ~ Ko 

Heat transfer in a l amina r  flow of h igh - t empera tu re  gas is effeeted 

by conduct ion and radia t ion .  If the considered vo lume of gas is trans- 

parent  to rad ia t ion ,  the considera t ion of the la t te r  is r e l a t i ve ly  s imple .  

In dense gases,  however ,  the rad ia t ion  may  be reabsorbed and in this 
case  the c a l c u l a t i o n  of transfer of rad ia t ive  energy in a tea1 spec t rum 

with a strong frequency dependence  of  the absorption coef f ic ien t  en -  

counters cons iderable  d i f f icul t ies .  A method of c a l cu l a t i ng  rad ia t ive  
energy transfer with a l lowance  for reabsorption was presented in [4-7],  

and we used this method in this work. 
If  there are high tempera ture  gradients  in the gas flows i t  is neces-  

sary to consider  the mutua l  effects of the ve loc i ty  and tempera ture  

distr ibutions.  The solution of the c o m p l e t e  system of Navier-Stokes  

equat ions,  however,  is fair ly d i f f icul t  even for an incompress ible  f luid.  
In [1 -3 ]  the problem of a nonisothermic  flow of gas in a tube (without 

radia t ion)  was solved with the aid of approx imate  hydrodynamic  equa-  

t_ions which are va l id  for high Reynolds numbers and large dis tances 
from the entrance.  

NOTATION 

x , r  -- physical  coordinates  

r 0 -- tube radius 
-- logar i thmic  rad ia l  coordinate  

A - -  constant  of l oga r i t hmic  d i l a t a t i on  

U,V - -  longi tudina l  and transverse ve loc i ty  components  
p -- pressure 

p -- density 
T -- t empera ture  

p --  viscosi ty coef f ic ien t  

• -- the rmal  conduct iv i ty  

Cp -- speci f ic  heat  a t  constant  pressure 

Q - mass flow rate  

~ o  - -  in tegra l  d ivergence  of radia t ive  energy flux density over 
spectrum 

UAu -- in tegra l  rad ia t ive  energy density over frequency in te rva l  
/xu 

UAu p -- in tegra l  equ i l ib r ium rad ia t ive  energy density 

c --  ve loc i ty  of l igh t  
<k>  -- absorption coef f ic ien t  averaged  over g iven  frequency in -  

t e rva l  
ql  -- rad ia t ive  heat  flux densi ty on walt 

q2 -- conduc t ive  heat  flux density on wall 

H -- enthalpy 
H (t) --  mean -mass  enthalpy 

R -- Reynolds number  

p -- Prandtl number  

M -- Mach number 

Subscripts: 0 denotes values  in,. i n i t i a l  s e c t i o n ; . ,  values  in  in i -  

t ia l  sect ion with r = 0; i ,  number  of frequency in terval ;  w, values  on 

wal l .  

1. We consider the heat  transfer in a l aminar  gas flow in a tube 

(M <<l). At high R = p,U. r0/P, in the region x ~ 0 at  a g rea t  d is tance  

from the en t rance  to the tube, where the paramete r  6 = V , / U .  is sma l l  

(V. = max V) and 6 ~ 1 /R by analogy with boundary- layer  theory, the 

comple te  Navier-Stokes  equations can  be replaced with accuracy to 

quanti t ies  of the order of 62 by the approx imate  equataons 

OpUr OpVr 
Ox " -$;"-r =0,  

OU OU Op t 0 (  OU) 
pU'~x" + pV "~'r = -- ~-xx +'7-'b" ~ rp.'-~r , 

op aT aT , O (  O~_r) 
0 - 7 : 0 '  pUCp~x -"-pVCpor -- r Or r• - -q ) .  (1.1) 

The der ivat ives  8p/Sr  = 0 and 8 p / a x  ~ 6M2]/p,/ra and, hence,  the  
densi ty,  specif ic  hea t ,  v iscosi ty  coef f i c ien t ,  and the rmal  conduct iv i ty  
can be regarded as functions of  the t empera ture  a lone .  Henceforth,  
instead of 0p /x  we wi l l  wri te  the  ordinary der iva t ive .  For the system 

of equations (1,1) in the region f~(x _> 0, 0 -< r -< r0) we write the 
boundary and in i t i a l  condit ions 

O r / O r = O ,  O U / O r = O ,  V = 0  for r = 0 ,  

r = r ~ . ,  U = 0 ,  V = 0  for r = r o ,  

T =  r~ U =  U~ p = p~ for x =  0 .  (1.2) 

These condit ions are suff icient  to find the values  of V(0,r)  and 

[dp/dx]x= a in  the i n i t i a l  section, and the  der ivat ives  wi th  respec t to  

x of the longi tudina l  ve loc i ty  component  and the t empera tu re ,  which 

enables us to m a k e  a step along the axis .  For this we have  to e l i m i n a t e  

OU/Sx and 8T/Sx  from the first equat ion  of (1.1) by using the  second 

and fourth, in  which "I~(r) and U*(r) are substi tuted.  Then,  for V(0,r)  

we obtain an ordinary d i f ferent ia l  equat ion of the first order wi th  pa -  

r amete r  [dp/dx]x= 0 . The two boundary condit ions on V enab le  us to 

de te rmine  both the function i t se l f  and the parameter .  
Formulat ion of problem (1.1), (1.2), however, is comp l i ca t ed  by 

the fact  tha t  the i n i t i a l  ve loc i ty  and tempera ture  profi les  can be as- 
signed arbi t rar i ly  only at  the tube entrance,  and Eqs. (1.1) are va l id  

only at  a la rge  d is tance  from the entrance.  In v iew of this the results 
of this work must  be regarded only as approx imate  engineer ing  c a l c u -  

lat ions.  Since s imul taneous considerat ion of the powerful reabsorbed 
rad ia t ion  and the exac t  hydrodynamic  p ic ture  is very diff icul t ,  such 
ca lcu la t ions  wi l l  be of interest .  

In the proposed work the in i t i a l  profiles T~ and U*(r) are taken  

from ca lcu la t ions  of a s teady e l ec t r i c  are.  In this case the c o m p l e t e  
Navier -Stokes  equations are va l id  up to a cer ta in  dis tance from the 

sect ion x = 0 and after this Fxts. (1.1) become val id .  We assume that  

Eqs. (1 .1)a t  smal l  6 describe approx imate ly  the whole region x > 0, 
and at  x < 0 the same equations are va l id ,  but with the energy re lease  

te rm in the energy equat ion.  Then,  when x = 0 we wi l l  have a discon- 

t inui ty  surface of the parameters ,  on which the conservat ion condi t ions 

derived from Eqs. (1.1) wri t ten in  d ivergent  form will  be sat isf ied.  

These condi t ions wil l  be as follows: 

[pV] = 0, [p + pV2l = 0, [pUH] = 0 .  

Hence,  on passage across the surface x = 0 the values  of U, "I ~,  
and p are conserved,  and only the transverse ve loc i ty  componen t  V 

has a discont inui ty .  This is a rather rough approach,  but  a solution of 

the c o m p l e t e  Navier-Stokes  equat ions would considerably c o m p l i c a t e  
the problem.  Thus, the solut ion of problem (1.1), (1.2) is very approxi -  

m a t e  up to a ce r t a in  d is tance  from x = 0. 
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The divergence of the radiative energy flux density ~ was calcu- 
lated from the known temperature profile on the assumption of local 
thermal equilibrium. The whole spectrum is divided into a series of 
frequency intervals, for each of which the absorption coefficient is 
averaged over the frequency [4-7]. For each interval the radiative 
transfer equation was solved in the diffusion approximation [4-8] '  

1 d ( r du~i~ 
3 (k)ir dr ~ ' ~ i  ~ ] ~ --uP-- Av( - -  uAvl (1.4) 

with boundary conditions 

duAvt /dr~O for r = 0 ,  

dun,, i / d r  -~- s/~ (k>iuAvt=O for r = ro �9 

We then determined 

Here (k) i and u ~  are known temperature functions [TJ. 
Equation (1.4) is based on the assumption that radlauve energy 

transfer along the channel axis has little effect on the divergence of 
the radiative energy flux. Estimates applicable to the conditions of this 
work showed that such an assumption gives an error of less than 10%. 

In the solution of the problem we used the condition of constancy 

of the mass flow rate 

?o 
2~ ~ pUrdr = Q (1.5) 

0 

instead of the condition that V equal zero. This relationship is obtained 
by term-by-term integration of the first equation in (1.1) over the 
radius. 

The system of equations (1.17, (1.5) and the boundary conditions 
(1.2) allows the dilation 

z 1 = r r 1 = r ,  U 1 = r  V 1 = V,  

T x = T, (dp / dx)l = a(dp / dx), Q1 = aQ. 

Hence, by the following selection of dimensionless parameters 

x 1 r , _ _ r  U V T 
X ' - - r  o t l '  - - r o '  U'=-U--**' V '=-~,TI '  T'=T-**' 

Cp 
I t '= Ix • =-~- , ,  ,. 

i~ , ,  Cp" - -  C p ,  

p.U.ro D*Cp, Q 
R - -  It, P =  z---~' O ' - - z r 0 ~ p . u . '  

we can eliminate the absolute velocity from the equations. This means 
that the obtained solution can be converted to a flow with a similar 
velocity profile by a simple dilatation, 

9. For convenience of calculation we replace the coordinate r' in 
the equation by the coordinate ~ = ln0. + A -- r'). This makes it 
possible, by assigning various A to dilate the wall region, where the 
radial gradients of the unknown functions are high. 

The problem was solved by the method of finite differences using 
iteration. The system of equations in dimensionless form was obtained 

by a two-layer implicit difference scheme. The second derivatives in 
divergent form were represented according to Marchuk's scheme [8]; 
the first derivatives with respect to 71 were represented by asymmetric 
differences, which ensures the validity of the pivot method [9] in the 
solution of difference equations. The integral in (1.5) is replaced by 

a trapezoidal sum. 
The procedure in solving the difference equations at each step 

along the axis was as follows. From the known values of the parameters 

on the preceding step the temperature profile was determined from 
the difference equation obtained from the fourth equation of (1.1) by 
the pivot method. Then, from the simultaneous solution of the dif- 
ference equations, corresponding to the second equation in (1.1) and 
(1.57, (dp/dx)' and the profile of the longitudinal velocity component 
were obtained. Finally, from the difference analog cf the first equa- 
tion of (1.1) the profile of the transverse velocity component was found. 
This process was repeated several times, as long as the difference in 
the parameters in two successive iterations exceeded a prescribed value. 

The coefficients in the equations were determined from the parameters 
obtained in the preceding iteration. The equation of radiative transfer 
(1.4) was solved in each frequency interval by means of the tempera- 
rare profile from the preceding iteration. We then determined the 
value of r  As a zero approximation we took the parameters from the 
previous step along x. 

The calculations were performed on a computer. The real proper- 
ties of hydrogen at a pressure of 100natm, calculated in [7], were 

tabulated. The values <k >i and uA~ i were taken from [7], were 
they were calculated for eight frequency intervals. The wall tempera- 
ture was taken as 300 ~ K. 

Besides the profile of T, r U, and V, in the c;oss sections of 
the tube we calculated the integral radiative-energy flux density ql 
over the spectrum on the wall, the conductive energy flux density q2, 
and the mean-mass enthalpy H (17, 

= OT 
q, "~o fr rdr, q,=--~:w(-'~-r )w, 

o 
ro ro 

These quantities are connected by the energy balance equation, 
which is obtained by term-by-term integration of the fourth equation 
of system (1.1) over the radius and over the axis, 

x 

Q [H (t) (0) --  H (t) (x)] = 2 gr01 (ql "~ q2) dx. 
o ( 2 . 1 )  

Relationship (2.1) was used to check the accuracy of the calcula- 

tion. 
3. We illustrate several calculations of a hydrogen flow, the ini- 

tial data of which are presented in Table 1 (here v = max [U~ 
In variants 1-3,  7 the initial temperature profiles were taken from 

calculations for stabilized arcs of the same radius [7], and the initial 
velocity profiles were calculated. In variant 8 the initial profiles of 
variant 3 were extended along the radius. The two initial temperature 
profiles (stabilized arc and parabola7 and the two velocity profiles 
(stabilized arc and jet along wall) were taken in various combinations 
in variants 3-6 .  

Figures 1-3 shows the profiles of the temperature, divergence of 
radiative energy flux density, and velocities for different cross sections 
of variant 1. In all the figures the Arabic figure denotes the number 

T able 1 

Bapllaltw R. c~t q (8/een) T,, ~ v T~ 

0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
3 
3 

t 
1 
t 
t .3t 
0.87 
1.27 

t0 
t00 

14.700 
t3.600 
t2.750 
12.750 
t2.750 
12.750 
8.850 

12.750 

R ~ 0 . 3  c,u I ~ 5 0 0  a 
R = 0 . 3  c~ l : t 0 0 a  
R = 0 . 3  c~ I = 3 0  a 
R = 0 . 3  c~ I = 3 0  a 
IIapa6oaa 
IIapa6oaa 
R : 3  c~ I ~ 3 9 0  a 
R = 0 . 3  cm I ~ 3 0  a 
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Fig. 1 

of the variant according to Table i .  For the first ten calibers there is 

intense cooling of the gas close to the axis, mainly by radiation, which 

causes transverse flows towards the axis. When radiation ceases to play 

the main role the temperature falls over the whole radius and the trans- 

verse flows become insignificant. The profile of the longitudinal velo-  
city component is close to a parabola in a l l  cross sections, although the 

temperature varies a factor of tens. This occurred in all  variants in 

which the profiles of stabilized arcs were taken as the init ial  profiles. 

A similar result was obtained in [10] for the regionof stabilized heat 
transfer, 

Figure 4 shows the temperature profiles for variant 3. The ini t ial  

profile has a different shape, but the cooling process is similar to 

variant 1--the temperature at first falls only in a narrow region close 

to the axis. A similar situation is observed in Fig. 5 in a flow in a 
tube of radius 3 cm (variant 7). 

The heat flux densities on the wall due to ordinary thermal con- 

ductivity and the total densities in relation to the distance along the 

axis are shown in Fig. 6 .  The circles here correspond to variant 1, 

the crosses to variant 2, and the triangles to variant 3. In all  three 

cases the radiant heat flux exceeds the conductive flux. The radiation 

then decreases rapidly and the heat flux density due to radiation is 
less than 10~ of the total flux for three calibers in variant 3, five 
calibers in variant 2, and fifteen calibers in variant 1. This instant 

corresponds approximately to a temperature of 9000 ~ K on the tube 

axis, as is shown in Fig. 7, where the axial  temperatures are plotted 

in relation to x /d .  In addition to the symbols used in Fig. 6 thesquares 
here correspond to variant 7. This figure shows that the axial  tempera- 
ture in a l l  four variants decreases almost exponentially. 

Figure 8 shows plots of the mean-mass enthalpy against the axial  
temperature for the same variants as in Fig. ?. The temperature pro- 

files are not similar in the ini t ial  regions of the flow. Radiation ceases 
to play a role in heat transfer at about 9000 ~ K, but the temperature 

profiles do not become similar until 5000 ~ K. 

Variants 3 and 8 differ only in the tube radius and, hence, com- 
parison of them indicates the role of radiation in relation to the radius. 

t: 0 ~erg/cm! �9 see) 

Fig, 2 
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Table  2 

x/d T OK q, 10 -1~ q~ t0 - ' ~  T ~  qt t0 - ' ~  q2 10- '~ 

0 
1 
3 
5 

10 

0 
t 
3 
5 

t0 

t2 750 
tO 250 
8 750 
7 950 
7 000 

12 750 
tO 700 
9 600 
9 050 
8 t50 

Variant 3 

1.49 
0.80 
0.03 

Variant 5 

6,99 
1.77 
0.44 
0. i7  
0.02 

0.89 
0.84 
0.83 
0.82 
0 .8 i  

0. i6  
0.24 
0.35 
0.49 
0.71 

t2 750 
9 tO0 
7 500 
6 900 
6 200 

i2 750 
9 750 
8 750 
8 200 
7 200 

Variant 4 

1.49 
0.06 

Variant 6 

6.99 
0.90 
0.t5 
0.04 

0.89 
0.97 
0.9t 
0.85 
0.77 

0.16 
0.26 
0.32 
0.37 
0.48 

3 
H(O./Okn(erg)g) ! / / 

J 

? 
Z 3 

I I 3 
l__d r(z,o)/o~[~ 

f tO r 

Fig. 8 
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Fig. 9 

Figure 9 shows the heat flux densities on the wall due to ordinary heat 

conduction and the total densities for variants 3, 7, and 8. The con- 
tinuous lines represent variant 3, and the dashed line variant 8. In the 

ease of a flow in a tube of radius 3 cm the density of the convective 

heat flux is an order less than in a tube of radius 0.3 cm,  and radia- 

tion plays a greater role up to hundred calibers. Here the dot-dash line 
is the curve of the total heat flux density on the wall for variant  7. 

The heat flux density due to ordinary heat conduction merges on the 

graph with the corresponding curve for variant 8. Radiation plays a 

role up to ten calibers, which corresponds to an axial  temperature of 

about 6500* K (Fig. 7). 
In variants 3-6  the ini t ial  temperature on the axis and the in i t ia l  

enthalpy flow rate were made the same. This was achieved by a suit- 

able choice of the mass flow rate. The temperature and velocity 

profiles obtained in variant 4 are shown in Figs. 10 and 11. A com- 

parison of the temperature profiles in corresponding cross sections in 

Figs. 4 and 10 indicates that they do not differ greatly,  although the 

corresponding velocity profiles in variants 3 and 4 differ considerably. 
Table 2 gives the values of the axial  temperatures and the heat flux 

densities on the wall due to radiation and ordinary heat conduction for 

a l l  four variants. The table shows that radiation disappears more rap- 

idly in the case of a je t  velocity profile and the same temperature 

profile. In the last two variants the temperature at the wall increases 

and, hence, the heat flux density due to ordinary heat conduction 

,o'\ r io-s[ ~K] 4, 

0.5 

Fig. 10 

! 

r 

oLJ I ~ ~  
= - a . . - - ~ - -  r , 

001 i _o.ozyl~=u I 
Fig. ii 

increases. The temperature on the axis is highest on ten calibers in 
variant 5. An analysis of these four variants shows that a change in the 
Initial  velocity profile from the arc type to the je t  type gives a dif- 
ference of not more than 150 in the axial  value of the temperature 
on ten calibers. 

The given results can, via dilation, be converted to other values 
of mass flow rate with the same ini t ia l  temperature profile and di- 
mensionless velocity profile. 

The authors thank A. T. Onufriev for interest and assistance in 

the work, and also V. G. Dulov for valuable comments. 
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